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ABSTRACT

Cryptography forms the backbone of modern secure communication. Many different meth-
ods are available for encrypting and decrypting data, each with advantages and disadvan-
tages. If communicating parties require speed of encryption more than incredibly robust
security, they may use a stream cipher, which is based on generating long strings of bits with
linear feedback shift registers (LFSRs), then making those strings cryptographically secure
by combining them with a nonlinear Boolean function called a combiner. In this thesis, we
investigate a modification to the classical combiner method by introducing a (nonsecure)
probabilistic randomization to the order in which the LFSRs are input into the combiner
function at each bit. We implemented two different designs for the probabilistic combiner:
one that randomly ordered four LFSRs and put them into a four-variable Boolean function,
and another that selected only three out of four LFSRs to use as inputs in a three-variable
function. Our tests on the resulting output strings show a drastic increase in complex-
ity, while simultaneously passing the stringent randomness tests required by the National
Institute of Standards and Technology for pseudorandom numbers.
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Executive Summary

Cryptography is the method by which modern communications become secure. One type of
cryptosystem that is moderately secure and quick to implement is the stream cipher, which
depends on the ability to create long strings of bits in a sufficiently random method. The
random string is then combined with the binary data through the bitwise XOR operation,
producing a ciphertext string that seems random itself. After the seemingly unintelligible
message has been transmitted, the receiver uses the bitwise XOR operation to combine
the message with the same random string used to encrypt the message, leaving behind the
original message.

The cryptographic strength of the stream cipher depends primarily on the random string
used to encrypt and decrypt the message. The most common method of creating such a bit
string is by first creating strings, using a linear feedback shift register, that are not random
enough to be secure on their own, and then mixing them in a cryptographically secure
manner using a Boolean function called a combiner. Traditionally, this combiner takes the
first bit of each input string and assigns each to a variable in the function, then the output
of the function becomes the first bit of the output string. The combiner then moves on to
the second bits of the input strings, assigns them each to their respective variables, and uses
the output of the function as the second bit of the output string. The combiner carries on in
the same manner until enough bits have been created to encode the message. Many of the
qualities of classical combiners have been studied, and upper bounds on the complexity of
an output string based on the complexities of the input strings have been proved.

This thesis introduces a modification to the classical combiner. Instead of assigning the bits
from the first input sequence to the first variable, the bits from the second input sequence to
the second variable, and so on, we apply a probabilistic approach that randomizes the order
of the input sequences such that the order changes at each bit in the sequence. We applied
this in two fundamental methods. First, we created four input strings and randomly chose
and ordered three of them at each bit to be used for a three-variable combiner. Second, we
created four input strings and randomly ordered them at each bit to be used in a four-variable
combiner.

We tested the resulting output strings from these probabilistic combiners using multiple

xv



metrics. Primarily, we judged the strings based on their linear complexity, which is a
measure of how many bits a linear recurrence relation would have to use in order to
describe the sequence perfectly. Our results far exceeded the known bounds for the classical
combiner, approaching an infinite linear complexity. We also tested the strings using the
National Institute of Standards and Technology’s Statistical Test Suite, which is a battery of
15 tests used to judge the randomness of a bit string. Our strings passed almost all of the
tests in the suite, with a single explainable failure.

In summary, our new method of bit generation is based on the idea of a combiner as used
in stream ciphers, and adds a probabilistic component that significantly increases the linear
complexity and statistical randomness qualities of the resulting output strings.
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CHAPTER 1:
Introduction

People in today’s world interact using cryptography on a daily basis, although most do not
even think about the security it brings or how it works. Following the proliferation of digital
communications, including satellite television, smart phones, and the internet, people are
sending and receiving massive amounts of data through digital means. Some data, like
funny cat pictures, has no need to be sent in a clandestine manner. Other data, however,
must be sent with some sort of secrecy or assurance of privacy. When individuals make
online purchases, or check online health data from their doctor’s office, they expect that their
personal financial and health information is kept secret. Similarly, when media companies
offer a subscription-only service like streaming video, they must ensure that their data can
be viewed only by people who have purchased the service, and thus, must obscure their data
before posting it online. This method of keeping data secret is called cryptography, and the
process of obscuring the data is called encryption, while the process of unscrambling that
data after transmission is called decryption.

1.1 Motivation
Perhaps surprisingly, the security of modern encryption schemes (called cryptosystems)
is based not on the obscurity of the mechanism used to encrypt the data, but the strength
of the secret key. The key is a string of numbers that tells the scheme how exactly to
scramble the data in a particular instance. The creation of a good key, therefore, requires
some way to access random numbers, since a nonrandom key would be easy to predict and
an adversary could use the known mechanism and guessed key to unscramble, or decrypt,
the message. Since computers are deterministic machines, it is impossible to generate
truly random numbers in a necessarily deterministic computer program. There are some
methods to harvest true random numbers from a computer, like through observing timing
information on the hard disk read/write head, but those methods are too slow to generate
enough digits to be useful for cryptographic purposes. For this reason, we use programs
designed to approximate randomness. These programs are called pseudorandom number
generators. Since most data is transmitted in a binary representation, we also use the phrase
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pseudorandom bit generator to mean effectively the same tool, but one which generates only
ones and zeros rather than the full spectrum of real random numbers.

1.1.1 Lightweight Ciphers
When encrypting data, the parties communicating have many choices of encryption
schemes. They must decide not only on the strength of the cryptosystem, but also on
how fast the system must work. Understandably, a stronger cryptosystem may take many
more operations, and thus more time, than a weaker cryptosystem. In those cases where
speed is more important than cipher strength, a party may use what is called a lightweight
cipher. This is a cryptosystem that is quick to encrypt, quick to decrypt, and strong enough
for the data being transmitted. One application for a lightweight cipher is in cell phone
communications. The data transmitted is usually not very sensitive, but the parties speaking
would still like some privacy in their communication. A cell phone conversation, however,
must be encrypted and decrypted very quickly, since any delay due to encryption would
cause confusion and frustration in the call.

One type of lightweight cipher is the stream cipher. Simply stated, the stream cipher
generates a “stream,” or string, of pseudorandom bits, and bitwise adds them (using the
“exclusive or” operation, or XOR) to the data being transmitted to encrypt. The receiver
then needs just to generate the same string of bits and XOR them with the encrypted data
to decrypt and recover the data that was sent. The speed of this method is restricted only
by the method of generating the bit strings, since the XOR of bits is one of the simplest
operations to implement in hardware or software.

1.2 Background
In this thesis, we focus on a particular type of stream cipher. This stream cipher is
implemented by first generating multiple sequences of bits in a fast but insecure method,
and then combining them into a single string using some sort of function that makes the
output much more difficult to guess than the input strings. The input strings are generated
using linear feedback shift registers (LFSRs), which rely on a linear recurrence relation to
generate bits in a rapid manner. The quickly generated strings are then combined using
another mechanism referred to (some could say unimaginatively) as a combiner. This thesis
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investigates not only the classical method of implementing a combiner for multiple LFSRs,
but also a probabilistic alteration to the method that increases the complexity, and therefore,
also the security, of the final output string.

1.2.1 Linear Feedback Shift Registers
LFSRs are easy to implement in hardware and in software, and are a very fast way of
generating long strings of pseudorandom bits. The bits have some good properties, which
will be described in detail in Section 2.3. LFSRs have a critical weakness, however, and in
short, that weakness is linearity. Since the sequences are generated by a linear recurrence
relation, it is relatively easy to determine that relation based on a small sequence of bits
pulled from the larger sequence.

1.2.2 Combiners
Since the LFSR sequences are not sufficient in and of themselves, we must alter them in
some way to increase their linear complexity. One common method of such an alteration
is the combiner, which is a nonlinear function that takes bits from multiple LFSRs as input
variables, and generates a single output string with higher linear complexity than any of
the input strings. Traditionally, this combiner function is implemented by labeling each
of the input LFSRs (e.g., L1, L2), then labeling each of the variables in the function (e.g.,
x1, x2, x3), and thus the bits from each input LFSR are used as the input in the location of
the corresponding variable. This implementation is simple and has some very beneficial
and easily proved properties that will be covered in Section 2.5.

Probabilistic Alteration
Our contribution to this area of cryptography is an implementation of an intriguing modi-
fication on the classical combiner. Instead of the classical method of applying a combiner,
which takes each LFSR and puts it in the same spot in the combiner at each bit, prompted
by [1] we used a probabilistic approach to scramble the order of the LFSRs at each bit. We
created a program to implement this new approach, and tested the output strings generated
and checked if it had better cryptographic properties. Our method created output strings
with linear complexities far beyond the known bounds for classical combiners. We further
tested the output strings using the Statistical Test Suite published by the National Institute
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of Standards and Technology (NIST), and the output strings passed almost all of the tests
for pseudorandom bit generators.
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CHAPTER 2:
Motivating Examples

Chapter 2 builds the foundation of mathematical background knowledge discussed in Chap-
ter 1. It presents examples of binary representation of characters, binary mathematical
operations, and the fundamentals of pseudorandom bit generation (PRBG) using LFSRs
and combiners. Furthermore, it discusses some concepts regarding assessing and compar-
ing strings to determine how to compare output strings from the probabilistic approach to
the combiner.

2.1 Binary Representation of Characters
Computers store data in a binary representation, or in other words, as ones and zeros. These
ones and zeros are known as binary digits, or bits. This is the simplest way to store data
in physical media, as well as the easiest way to transfer data using physical means like
electrical impulses. Storing data in a binary representation requires a sort of dictionary that
converts characters into a unique string of bits. One simple example of such a dictionary is
the American Standard Code for Information Interchange (ASCII), as shown in Figure 2.1.

Using such a dictionary, we can convert a message into a series of bits called a bit string. For
example, the message “hello” is converted into the bit string 01101000 01100101 01101100
01101100 01101111.

2.2 Binary Addition
Now that we can represent data as ones and zeros, the role of cryptography is to obscure
such a string of ones and zeros for transmission over an unsecured line, and then revert the
obscured string to the original message once it has been received. This commonly involves
performing some sort of mathematical operations using just ones and zeros. For this reason,
as it is customary, we introduce a special kind of addition (called the “exclusive or”, or
XOR) defined only for the integers 0 and 1.

XOR addition is investigated more thoroughly in the branch of mathematics known as field
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Figure 2.1: ASCII Code Chart

This chart shows all binary representations of standard ASCII characters.
Source: [2].

theory, which is explained in detail in [3].

XOR addition, denoted with the symbol ⊕, works in the same way as traditional addition,
with the exception that since one and zero are the only elements of the field, one plus one
cannot be two. For our purposes, two is equivalent to zero, so 1 ⊕ 1 = 0. Table 2.1 gives a
full account of XOR over the binary field.

With this foundation, we can XOR two bitstrings together. The only other caveat we must
discuss is that unlike traditional addition, in our application we XOR each bit position
independently of others. We call this procedure the bitwise XOR. There is no “carrying” as
in traditional addition. We make that convention in order to maintain message length. An
example of adding two bitstrings is shown in Figure 2.2.
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Table 2.1: XOR Table

⊕ 0 1
0 0 1
1 1 0

This table shows the XOR of integers over the binary field.

Figure 2.2: XOR Example

1 0 0 1
⊕ 0 0 1 1

1 0 1 0

This example shows the bitwise XOR of two bitstrings.

The One-Time Pad
One immediate application of bitwise XOR to cryptography is observing that the bitwise
XOR can scramble a message. Simply by taking the bits of a message, and combining
them using bitwise XOR with a random string of ones and zeros of the same length as the
message, we can transform an intelligible message into a garbled string of nonsense. Figure
2.3 is an example of encrypting our example message using bitwise XOR.

Figure 2.3: Simple XOR Encryption

h e l l o
01101000 01100101 01101100 01101100 01101111

⊕ 01010110 01111010 11100001 10101110 10000110
00111110 00011111 10001101 01000010 11101001

Decryption of a message that has been encrypted using bitwise XOR is quite simple. Since
each bit is its own additive inverse, decryption requires only that the receiver add the same
random string of ones and zeros to the encrypted message in order to decrypt it and recover
the original message. The decryption of the message we just created is demonstrated in
Figure 2.4.
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Figure 2.4: Simple XOR Decryption

00111110 00011111 10001101 01000010 11101001
⊕ 01010110 01111010 11100001 10101110 10000110

01101000 01100101 01101100 01101100 01101111
h e l l o

With some other considerations, we can create an incredibly secure cryptosystem. First,
we must require that the key (in this case, the random string of ones and zeros) must be
truly random. If the key is not truly random, there may be some way to guess future bits of
the key given previous bits. Second, the key must be at least as long as the message being
transmitted. If the key were any shorter, we would have to repeat parts of the key in order
to have enough bits to XOR with the bits in our message. Third, the key must only ever be
used one time, since if we use the same key more than one time, someone who had access
to the message the first time we used it would be able to decrypt the second message as
well. With these three caveats, simple XOR encryption becomes the cryptosystem known
as the One-Time Pad.

The One-Time Pad is, in fact, the only type of encryption that is provably secure against
every possible attack [4]. Given any amount of prior information, an attacker can never
know what message follows the information he has. Since the key is truly random, there is
no possible way to guess the next bit given any number of previous bits. Since the key is the
same length as the message, it never repeats, so no previous bits give even a hint as to the
bits that follow. Since the key has never been used before, and will never be used again, no
amount of knowledge of other encrypted messages can help the attacker crack the message
in question. It is perfectly secure against attack.

The One-Time Pad, however, has significant shortfalls when considering applicability. First,
it requires a truly random bitstring that is at least as long as the message. Truly random
numbers are computationally very inefficient to create (since computers are deterministic
machines, any bitstring created strictly by a computer program is inherently not truly
random). Generating truly random numbers typically requires measuring natural processes
that are considered to be truly random, and techniques that do that are typically very slow [5].
Furthermore, since the key can only ever be used once, a new key must be generated each
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time a new message is to be transmitted. These keys must be transmitted and stored as well,
so the parties communicating must also have a secure transmission and storage method in
place to safeguard the key until it is to be used. Therefore, although the One-Time Pad is
provably perfectly secure, it is impractical to implement in most cases.

2.3 Linear Feedback Shift Registers
Since computers require longer strings of bits than can be generated in a reasonable amount
of time by truly random number generators, we must find a way to generate a pseudorandom
sequence of bits quickly. In order to be cryptographically secure, however, we must also
add the constraint that this string has certain properties. Therefore, before explaining how
to generate strings with good properties, it is important to explain what properties make a
bitstring good.

In order to be considered random enough for cryptographic purposes, a bit string must have
the property that given any number of bits from the string, an attacker should have no greater
than a .5 chance of guessing the next bit (that is, there is no bias in the generated bits). The
first property that comes from this requirement is that the string must be balanced, which
means it must have approximately the same amount of ones as it has zeros. Clearly, if a
string was not balanced, an attacker could simply guess the more frequently occurring bit
and be correct more than 50 percent of the time.

The next property that is important for a pseudorandom bit sequence is that it has a good
distribution of runs. A run is a repeated substring of the same bit, like 00000 or 111111111.
A good bit string must have the right amount of runs of the right lengths. Clearly, a string
with too large a proportion of long runs would make it easier to guess the next bit, since
it would be more likely to be the same bit as the preceding bit. Conversely, too high a
proportion of very short runs is also a weakness, since an attacker could simply guess that
the next bit will be opposite the last bit. Mathematically speaking, a good distribution of
runs means that the frequency of occurrence of a run of length one is 1

2 , the frequency of a
run of length two is 1

4 , and so on. In general, the frequency of occurrence of a run of length
n should be 1

2n .

Finally, a strong bit string should not repeat in a short period. If an attacker can recognize
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a period of repetition, then he can simply look back one period into the past and guess the
next bit with 100 percent accuracy.

Our goal, then, is to create an algorithm that quickly generates a long string of bits that
satisfies those three properties, as well as some others specified by the NIST [6]. An LFSR
is one way to generate a long string of bits that are balanced and have a good distribution
of runs. It works by introducing a recurrence relation such that the next bit in a sequence is
defined by some function of the previous bits. One such equation is

xn+3 = xn ⊕ xn+1. (2.1)

Implementing an LFSR like the one in Equation 2.1 is simple, whether in hardware or
software. One way to think of how the LFSR works is referred to as the Fibonacci register.
Since our example recurrence relation looks back three bits, we set up our register with
three blocks of memory. Then, we mark the positions that will be added together with a
line, called a tap. The empty register is shown in Figure 2.5.

Figure 2.5: Empty Fibonacci Register

The next step is to fill in the blocks with a binary seed, or initial value, chosen at random.
We use the sequence 110 as our initial value. Once the blocks are filled, we XOR the values
that are tapped, shift each value to the next block, and record the new value as the first bit
in our output string. This process is shown in Figures 2.6 and 2.7.
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Figure 2.6: Filled Fibonacci Register

Figure 2.7: Shifted Fibonacci Register

It is important to note that the initial values cannot all be 0, since when we add them together
later they will always produce a 0, and thus, the final bit string will be a string of 0s. Clearly,
setting all of the initial values to 0 does not produce a very random bit string.

We have now created a bit string using a very simple method. Furthermore, this string is
guaranteed to be balanced and have an optimal distribution of runs. What is more, with
careful choice of a recurrence relation, we can also guarantee a maximum period of 2n − 1,
where n = number of bits in the recurrence, before the sequence repeats. This maximal
period sequence, or m-sequence, occurs because there are 2n possible states for the register,
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and the best sequence achieves all of the states save the state of all zeros, as discussed in
the previous paragraph. This yields a maximal period of 2n − 1. Further discussion of the
choice of the involved recurrence relation can be found in [7].

2.3.1 Linear Complexity and the Berlekamp-Massey Algorithm
The strength of a sequence generated by an LFSR is given by the minimum number of bits
in the recurrence relation that would generate that sequence. For our example sequence, the
recurrence looked back three bits, and there is no shorter recurrence that would generate
the same sequence. Therefore, we say that the sequence has a linear complexity of 3. A
sequence that required a recurrence relation that looked back 12 bits would have a linear
complexity of 12.

The main weakness of an LFSR is due to the fact that, although it has good balance, a good
distribution of runs, and good length before repeating, the relationship is linear. This fact
makes it relatively easy to guess the recurrence relation given only a portion of the sequence.
In fact, given only 2L bits, where L is the linear complexity of a string, the Berlekamp-
Massey algorithm is guaranteed to find the recurrence relation that generated that string [8].
Therefore, although an LFSR has many desirable properties, it is insufficiently secure for
cryptographic purposes.

2.4 Binary Multiplication
Since an LFSR only uses the XOR operation, and it is insufficient to generate a sequence
with high enough complexity, we introduce binary multiplication. Multiplication over the
binary field works exactly the same as traditional multiplication. Since zero and one are the
only elements of the field, and every product of the two of them remains within the field, no
changes or clarification is needed to describe multiplication. Table 2.2 shows all products
over the binary field.

Similar to binary addition, we multiply corresponding bits in a bitwise manner in order to
maintain message length.

Unfortunately, binary multiplication alone is insufficient to create a cryptosystem like the
One-Time Pad, because there would be no way to decrypt the encoded message. A 0 in the
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Table 2.2: Binary Multiplication

· 0 1
0 0 0
1 0 1

This table shows all the products of integers over the binary field.

Figure 2.8: Bitwise Binary Multiplication Example

1 0 0 1
· 0 0 1 1

0 0 0 1

encrypted message, when paired with another 0 in the key location, would leave ambiguity
with respect to the plaintext, since either a 0 or 1 could have produced the same resulting
ciphertext. Regardless, multiplication provides the method to break the linearity of a string
created from an LFSR.

2.5 Combiners
Now that we have binary addition as well as multiplication, we can combine multiple LFSR
strings with a nonlinear function in order to create a more complex string that is more
resistant to analysis via the Berlekamp-Massey algorithm. We will discuss combiners on
three LFSR strings, though the concept can be extended to any number of strings.

A classical combiner is simply a Boolean function that takes some number of LFSR-
generated strings as arguments, and produces another bit string. The least complex combiner
would be simply adding together each of the bit strings, using the equation

f1(x1, x2, x3) = x1 ⊕ x2 ⊕ x3. (2.2)

Using some LFSR bit strings as an example, this combiner would generate a new sequence,
as shown in Figure 2.9.
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Figure 2.9: Linear Combiner Example

x1 1101001110100111
x2 1010110010001111
x3 1100110100100001
f1 1011001000001001

While the string produced by this combiner does have increased complexity over each of
the input strings, the increase is bounded by the periodicity of each of the input strings, and
so the complexity is limited by the sum of the complexities of the input strings. In order to
get a greater increase in linear complexity, we must introduce a nonlinear component to the
combiner. By using nonlinear Boolean functions in the combiner, we disguise the linearity
of the resulting string, and make it much harder to analyze. One example of a nonlinear
combiner is

f2(x1, x2, x3) = x1 ⊕ x1x2 ⊕ x3. (2.3)

Using the same input strings, we come up with a completely different output string, as
demonstrated in Figure 2.10.

Figure 2.10: Nonlinear Combiner Example

x1 1101001110100111
x2 1010110010001111
x3 1100110100100001
f2 1001111000000001

Since there is a nonlinear component in the combiner from Figure 2.10, the complexity
increases significantly more than in a linear combiner.

2.5.1 Bounds on Linear Complexity
Upper bounds on linear complexity for classical combiners have been studied extensively.
Most importantly, the linear complexity of an output string, given input LFSR strings X1

through Xn, with corresponding complexities L1 through Ln, after being combined in an
n-variable function f (X1, ..., Xn), is bounded by f (L1, ..., Ln) [9]. Furthermore, if the linear
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complexities of the input LFSR strings are coprime, then we are guaranteed an output string
with the maximum possible linear complexity.

In our example, we used input strings with linear complexities 3, 4, and 5, respectively.
Therefore, using a linear combiner, the best possible complexity of an output string we could
achieve is 3+ 4+ 5 = 12. The Berlekamp-Massey algorithm would still be able to generate
a recurrence relation quickly on that string. When we introduced a nonlinear combiner in
the second example, however, the upper bound for complexity is 3+ (3)(4) + 5 = 20, which
is much greater than the linear combiner. In this small example, the algorithm would still
be able to return a recurrence relation, but it would be more difficult. Furthermore, as the
number and complexities of the input strings are increased, as well as the degree of the
combiner, this increase in linear complexity becomes so strong that the Berlekamp-Massey
algorithm becomes computationally impractical in attacking the string.
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CHAPTER 3:
Methodology

Chapter 3 describes the rationale behind the implementation of the probabilistic combiner.
It also discusses specifics regarding the method of implementation, beginning with con-
structing an LFSR, and continuing through the classical and then probabilistic alteration to
a combiner. All examples of code created are available in the Appendix.

3.1 Language
We chose to write the code using R, which is a statistical programming language built
using mostly the C language. We chose to write in R primarily due to familiarity with the
language, but also because the language lends itself nicely to probabilistic applications and
has many built-in functions for random number generation and random sampling. Though
the code used for randomness in R may not be cryptographically secure, it suffices for our
purposes, since the security in our code does not rely on the random sampling, but rather
on the implementation of the combiner.

3.2 Coding Strategy
We decided to write this code from scratch, instead of using preexisting code, for a variety
of reasons. Primarily, we wanted to be able to build the code in such a way that it was highly
adaptable to multiple applications later. For example, when coding the LFSR portion of
the program, we allowed the output length and recurrence relation to be independent input
variables, so that changing the recurrence relation did not require a large amount of effort.

3.3 Classical Combiner
In order to code the probabilistic combiner, we first coded a standard combiner so that we
could verify that it functioned properly, then added the probabilistic modification. We wrote
a program that created a single LFSR, with some careful planning involved. In order to
accommodate adjustments later, we wrote the program to accept output string length and
recurrence relation as variables, rather than hard-coding them into the LFSR. Because of
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this, the code easily accepts any recurrence relation, should a user want to use a specific
LFSR string in their analysis. Also, since testing required analysis of bit strings of varying
length, having a single variable to accommodate output length made this analysis much
easier. Furthermore, since each LFSR requires some number of seed values, we created
code to generate each seed value as a random sample from a uniform distribution on [0, 1],
rounded to the nearest integer. We calculate the length of the seed based on the length
of the recurrence relation. As an important note, we did not code a failsafe to ensure the
seed was not the string consisting of all 0’s. Since the seed was generated from a uniform
distribution, however, there is only a chance of

1
2n of receiving that string, where n = the

number of bits in the seed. All of our recurrence relations were of size at least 8, which
means the probability of generating the string of all 0’s is no greater than .004. What is
more, even if such a string were generated, it would be obscured after applying the combiner
process. We considered this an acceptable risk, though anyone who desired to add such a
failsafe could do so with little difficulty by adding code to check if the seed was the 0 string,
and making the code repeat in case it was.

After creating the code to build a single LFSR, we scaled it up to build multiple LFSRs and
store the result in a two-dimensional array. The array allowed for easy lookup during the
combiner phase of the program, since each LFSR could be called from the same object.

Coding the combiner involved simply calling each LFSR from the LFSR array, and adding
or multiplying as called for by the combiner function. In our program, we chose simple
combiners of low degree that were balanced. This allowed for easy comparison between
the classical and probabilistic combiners, because the properties and bounds were easy to
calculate in the classical case. For a more detailed discussion on Boolean functions and
their properties, see [10].

When programming the combiner, we used a construct that allowed for easy conversion
to the probabilistic combiner. Instead of simply coding the combiner function to look up
specific rows corresponding to specific LFSRs in the LFSR array, we defined a constant
vector of the same size as the combiner, and set the combiner to call the row from the
LFSR array corresponding to the particular entry in the vector. Finally, we programmed the
classical combiner to save its output in a separate array, so that it could be exported simply.
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3.4 Probabilistic Combiner
Once the classical combiner was working properly, we implemented the probabilistic com-
ponent. Simply, we added a line of code that redefined the constant vector described above
as a random permutation of the integers from 1 to n, where n = the number of LFSRs
in the array. That line was placed inside the loop that repeated for each bit in the output
string, so the combiner read a randomized permutation of LFSRs before calculating the
function at each bit. For example, when calculating one bit, the LFSRs might be fed into
the combiner function in the order (1, 3, 4, 2), but the next bit might be calculated with the
order (4, 1, 2, 3). By making this one small change to a single line of code, we completely
changed the combiner process. We implemented the change in a few different applications.

3.4.1 4 Choose 3
One application of the probabilistic combiner was generating more LFSRs than the com-
biner function needed to accept. Then, by generating random permutations of integers as
described above, but of a size equal to the size of the combiner, we can not only introduce
the complexity of more LFSRs than would normally be included in such a combiner, but
also increase complexity by randomizing which LFSR is used to calculate each bit. We
used the combiner in Equation 2.3.

Though the complexity increase is drastic using this method, we wanted to make sure
that we were comparing resulting bit strings in as fair a manner as possible. Using our
method, we added complexity in two different ways: first, by combining four LFSRs in
a three-combiner, and second, by randomizing the order in which each of those LFSRs
were added. We felt it unfair to compare the classic combiner’s performance to this new
combiner, because adding the complexities of four LFSRs into a three-combiner would
clearly increase the complexity, when what we wanted to test was primarily the effect of the
randomization. This led us to the 4 choose 4 combiner, which is described below.

Linear Combiner
One interesting application of a probabilistic combiner that uses more LFSRs than the
combiner requires is the linear combiner. As discussed in Section 2.5, a linear function is
a terrible choice for a combiner, since it increases the linear complexity by such a small
amount. When a probabilistic approach like ours is applied, however, the complexity
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increase is much more difficult to predict, since we introduce more randomness by choosing
which LFSRs are included when calculating each bit.

3.4.2 4 Choose 4
In order to isolate the effect of randomizing the order of the LFSRs at each bit from the
effect of including more LFSRs than a combiner would normally accept, we decided to
implement the probabilistic combiner on a function that accepts the same amount of input
strings as we generated. This approach enables us to compare the probabilistic combiner
with the traditional combiner in a more fair manner. We chose to use the function

f3 = x1 ⊕ x2x3 ⊕ x4. (3.1)

This equation is not the greatest choice for a realistic combiner application, as it has
nonlinearity 4, but it is balanced, and it has correlation immunity 1, but was sufficient for
our purposes. See [10] for more details on these cryptographic concepts).

3.5 Analysis Tools
The primary measure of randomness that we compared our results with was linear com-
plexity, as explained in Section 2.3. In order to calculate the linear complexity of our output
strings, we exported the strings to be analyzed in a different program than R, since there
were no convenient analysis tools built into R. We primarily used Wolfram Mathematica,
and code that was created by Galbreath and extended by Gerhardt [11]. The code runs
the Berlekamp-Massey algorithm on a bit string and outputs the linear complexity as well
as the linear complexity profile, and the corresponding recurrence relation. The linear
complexity profile is a way to track the linear complexity increases as the algorithm runs;
it also produces an easy way to visualize the results in a graph. A good bit string increases
complexity at a rate approximately equal to

n
2
, where n is the number of bits analyzed up to

that point in the algorithm. Unfortunately, the algorithm implementation in Mathematica
could only analyze bits strings of length up to 10, 000 bits before it became too slow to run.

We also used a battery of tests prescribed by the NIST to judge the randomness of bit strings.
These statistical tests, collectively referred to as the NIST Statistical Test Suite (STS),
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give results as p-values, where the null hypothesis is randomness. Thus, a low p-value
would imply nonrandomness, and a p-value that fails to reject the null hypothesis implies
sufficient randomness. These tests were also implemented using Wolfram Mathematica,
and code written by Galbreath and Gerhardt [12]. Similar to the linear complexity tests
in Mathematica, though, the STS code ran too slowly on bit strings that were too long.
For this reason, we also used an implementation of the STS written in Python and C by
Justamante [13] to test strings up to two million bits in length.
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CHAPTER 4:
Results

Chapter 4 details the results of various tests on the output strings created by both the classical
combiner, as well as both the 4 Choose 3 and the 4 Choose 4 probabilistic modifications.
We will first discuss results of linear complexity tests, and compare the theoretical bounds
described in Section 2.5 with the actual results we obtained using each combiner. Finally,
we will show the performance of the strings when subjected to the NIST Statistical Test
Suite.

4.1 Linear Complexity
The primary measure of randomness that we used to judge the performance of our various
combiners was linear complexity. The reason we chose linear complexity is because that
is the most common measure of randomness used when analyzing LFSRs and combiners.
Unfortunately, there was no easily accessible test for linear complexity in R. Therefore, we
implemented the test in a different programming language: WolframMathematica. The test
in Mathematica provided as outputs not just the linear complexity, but also the recurrence
relation and the linear complexity profile. Unfortunately, it ran too slowly to accept bit
strings longer than about 50, 000 bits. That said, we feel that the insight gained from testing
the shorter bit strings is sufficient for our purposes.

One important note to remember is that the Mathematica program relies on the Berlekamp-
Massey algorithm to calculate linear complexity. Asmentioned in Section 2.3, the algorithm
requires 2L bits to determine a linear complexity of L. Thus, the practical limit for any
linear complexity test is half of the bits of the input string. For example, a truly random bit
string of length 100, 000 bits would return a linear complexity of 50, 000 when put through
the Berlekamp-Massey algorithm.

4.1.1 Classic 3-Combiner
Before testing the probabilistic combiner, we ran the tests on output strings of the classical
combiner for comparison. The input LFSRs that we used for all of the tests had complexities
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L1 = 8, L2 = 9, L3 = 11, and L4 = 13. We chose those complexities because they are
coprime and thus ensure that we achieve the upper complexity bounds when combined via
the classical combiner. The function we used for the 4 Choose 3 combiner was the same as
Equation 2.3. In order to maximize the linear complexity of the output string, we chose to
use the fourth LFSR for x1, the third as x2, and the second as x3. By the formula presented
in Section 2.5, the expected complexity of the output bit string was 13+ (13)(11)+9 = 165.
In fact, this is exactly the result we achieved. Figure 4.1 shows the linear complexity profile
of the output string. As shown in the figure, the linear complexity increased at a steady
rate until 330 bits had been processed, at which point the complexity leveled off at 165.
This shows the point where the algorithm had determined a minimal recurrence relation
that describes the sequence, and in this case, it took 165 bits to describe a relation for the
new bit string.

Figure 4.1: Linear Complexity Profile of the Classical 3-Combiner
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4.1.2 Probabilistic 4 Choose 3 Combiner
We then analyzed the probabilistic combiner, using the same combiner function and all 4
LFSRs. When analyzing a string of 10, 000 bits, we received a linear complexity of 5, 001,
meaning the algorithm continued to run until it ran out of bits to analyze, and still had not
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found a valid recurrence relation. The linear complexity profile, as shown in Figure 4.2,
continued to grow in complexity as the algorithm ran and never leveled off.

Figure 4.2: Linear Complexity Profile of all Probabilistic Combiners
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We further analyzed the 4 Choose 3 probabilistic combiner by changing the combiner
function to the linear combiner. Clearly, the best possible complexity using the same input
LFSRs and the classical combiner would be 13 + 11 + 9 = 33, but we wanted to see if the
probabilistic method could exceed that bound. In fact, the probabilistic method drastically
exceeded the bound. Much like when using the nonlinear combiner above, output strings
from the probabilistic combiner showed linear complexity profiles that continued to increase
as the strings we analyzed got longer and longer. Its linear complexity profile was identical
to the one shown in Figure 4.2. As the algorithm continued to run, the complexity of the
string increased at a steady rate, showing no sign of leveling off.

4.1.3 Classic 4-Combiner
We continued our tests by looking at the classical 4-combiner. As discussed in Section
3.4, we wanted to isolate the effects of the probabilistic randomization from the effects of
having too many input LFSRs for the combiner. To get accurate baseline data, we tested the
combiner in Equation 3.1, using the same four LFSRs as above. The upper bound for linear
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complexity of the output string, then, is 8 + (9)(11) + 13 = 120. When we tested an output
string of 10, 000 bits in the Mathematica program, we saw exactly what we expected. The
output string had a linear complexity of 120, and the linear complexity profile leveled out
at 120 after 240 bits were analyzed. The linear complexity profile is shown in Figure 4.3

Figure 4.3: Linear Complexity Profile of the Classical 4-Combiner

0 200 400 600 800 1000
0

100

200

300

400

500

4.1.4 Probabilistic 4 Choose 4 Combiner
Similar to the results of the 4 Choose 3 probabilistic combiner, the 4 Choose 4 combiner
gave an output string with seemingly infinite linear complexity. The 10, 000 bit string gave
a linear complexity of 4, 999. Its linear complexity profile was also identical to the one
shown in Figure 4.2.

4.2 NIST Statistical Test Suite
We finished evaluating our bit strings by testing the strings using the NIST STS. The STS
currently consists of 15 different statistical tests, each designed to evaluate different qualities
that a random bit string should have. The simplest tests evaluate balance and distribution of
runs, and the others test more complex randomness qualities. One important note is that the
code we used was written in 2010, and also in 2010 the NIST removed two tests (namely
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the Lempel-Ziv Compression Test and the Cumulative Sums Reverse Test) from the suite.
Our results include the Cumulative Sums Reverse Test, but it is no longer part of the official
STS.

We tested each of the three types of probabilistic combiners using the STS. Initially, we
used a program written by [12] in Mathematica that produced easy to read charts with the
results. We were able to test up to 200, 000 bits before the program ran too slowly to be
useful. Those results are shown in Figures 4.4, 4.5, and 4.6.

Figure 4.4: STS Results for 200K Bits from the Probabilistic 4 Choose 3
Combiner

In order to test longer strings (over 1, 000, 000 bits), we used an implementation of the STS
created by [13], written in C and Python. We tested strings of length 2, 000, 000 bits from
each of our three implementations of the probabilistic combiner. Table 4.1 shows the results
of the tests on the longer bit strings, and Table 4.2 shows the order in which the tests were
performed.

Clearly, strings generated by our probabilistic combiner have a very strong passing rate
for the tests required by the NIST. The only test that failed (p-value below α = .01) was
the Discrete Fourier Transform test on the 4 Choose 3 nonlinear combiner. We expected
this test to fail, since the combiner function we used is not a particularly strong function,
partially due to the fact that we were using so few LFSRs, as well as the fact that we were
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Figure 4.5: STS Results for 200K Bits from the Probabilistic 4 Choose 3
Linear Combiner

Table 4.1: NIST STS Results

String/Test 1 2 3 4 5 6 7 8
4C3(linear) .392 .080 .612 .691 .562 .123 .377 .559

4C3 .886 .680 .442 .242 .948 .000 .672 .424
4C4 .319 .517 .525 .465 .831 .726 .757 .357

String/Test 9 10 11 12 13 14 15
4C3(linear) .167 .287 .671 .284 .575 .531 .891

4C3 .306 .660 .525 .353 .533 .349 .936
4C4 .458 .225 .975 .383 .976 .051 .956

This table shows results (p-values) of the STS on our bit strings

only using a three-variable combiner. Any realistic implementation of a combiner would
use many more LFSRs, and a combiner function with far more variables. The high pass
rate implies that the strings we have generated far surpass the randomness generated by
a classical combiner, and that by simply mixing up the order of the LFSRs at each bit
during combiner calculations, we can introduce a sufficient amount of randomness to be
cryptographically secure.
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Figure 4.6: STS Results for 200K Bits from the Probabilistic 4 Choose 4
Combiner

Table 4.2: NIST STS Tests

Test Number Test
1 Monobit Frequency Test
2 Block Frequency Test
3 Runs Test
4 Longest Runs Test
5 Binary Matrix Rank Test
6 Spectral Test
7 Nonoverlapping Template Matching
8 Overlapping Template Matching
9 Maurer’s Universal Statistical Test
10 Linear Complexity Test
11 Serial Test
12 Approximate Entropy Test
13 Cumulative Sums Test
14 Random Excursions Test
15 Random Excursions Variant Test

This table shows the order of the tests in Table 4.1
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CHAPTER 5:
Conclusion and Future Work

This thesis analyzed the effects of a probabilistic combiner on bit sequences generated
by LFSRs. We generated code that modified the classical combiner method to include a
probabilistic component, then analyzed the resulting strings with a variety of tests.

The primary metric we used to quantify our bit strings was linear complexity. While the
upper bound on the linear complexity of the output string of a classical combiner function
is well known [9], we far exceed this bound using the probabilistic combiner. Furthermore,
for any string of length n that we analyzed with the Berlekamp-Massey algorithm, we
consistently saw a linear complexity of about

n
2
. This result implies that our probabilistic

combiner created a functionally infinite complexity bit string (it would be quite interesting
if that is the case, in general).

We also subjected our bit strings to the NIST STS, which is the current standard for testing
the randomness of bit strings. Our bit strings passed almost all of the tests in the suite, even
when the classical combiner using the same input LFSR strings failed the tests.

5.1 Future Work
There is much opportunity for future work using this foundation. Dr. Stănică and CDR
Martinsen are currently analyzing the deeper mathematical foundation of the results that
we found, to see if anything can be proved regarding the linear complexity of a bit string
generated by this method [1].

Comparisons between the performance of the probabilistic combiner, used as a PRBG,
against other known PRBGs like Blum-Blum-Shub (described in [14]) or Blum-Micali,
could demonstrate interesting qualities of the output strings. If the probabilistic combiner
can generate bits more rapidly, and at least as randomly, as these other generators, then
the applications could be widespread. Any current application of pseudorandom numbers,
cryptographically secure or not, could potentially be expedited and made more secure by
this probabilistic modification to the combiner.
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APPENDIX: Code Examples

The code below was used to create sequences of bits to be tested. All code in this section
was written by Nicholas Sharpe, using R.

A.1 LFSR Code
The code below creates a single LFSR. The variable LFSRlen is the desired output length
for the LFSR, and outmat is initialized to be a matrix of zeros large enough to hold each
LFSR created. The recurrence relation is stored in the variable prim. By repeating the
lines from prim through the end, we easily created multiple LFSRs, and simply changed
the recurrence in each one to ensure they were different.

LFSRlen = 200000
ou tmat = ma t r i x ( r ep ( 0 , t ime s =4∗LFSRlen ) , 4 , LFSRlen )

pr im = c ( 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 )
b i t s = l e n g t h ( pr im )−1
seed = c ( round ( r u n i f ( b i t s ) , 0 ) )
f o r ( i i n 1 : ( b i t s ) ) {

ou tmat [ 1 , i ] = seed [ i ]
}

f o r ( i i n ( b i t s + 1 ) : LFSRlen ) {
f o r ( j i n 1 : ( b i t s ) ) {

i f ( pr im [ j ]==1) {
ou tmat [ 1 , i ] = ( ou tmat [ 1 , i ]+ ou tmat [ 1 , ( i − b i t s + j −1)])%%2

}
}

}

33



A.2 Classical Combiner
Once the outmat matrix had been created, the code for the combiner simply required
inputting values from the matrix into the proper Boolean function, as we did below. We
added the p vector as a placeholder in the classical combiner that could be modified in the
future to allow the probabilistic combiner to work properly.

o u t s t r i n g s = ma t r i x ( r ep ( 0 , t ime s =2∗LFSRlen ) , 2 , LFSRlen )
p = c ( 1 , 2 , 3 , 4 )
f o r ( i i n 1 : LFSRlen ) {

o u t s t r i n g s [ 1 , i ]= sum ( ou tmat [ p [ 1 ] , i ]+ ou tmat [ p [ 2 ] , i ]∗
ou tmat [ p [ 3 ] , i ]+ ou tmat [ p [ 4 ] , i ])%%2

}

A.3 Probabilistic Combiner
The probabilistic combiner required a single line of code be changed from the classical
combiner. Instead of using a constant p vector, as in the classical combiner, we moved
the line inside the loop, and calculated a new p vector for each bit that we put through the
combiner.

f o r ( i i n 1 : LFSRlen ) {
p = sample . i n t ( 4 , s i z e =4)
o u t s t r i n g s [ 2 , i ]= sum ( ou tmat [ p [ 1 ] , i ]+ ou tmat [ p [ 2 ] , i ]∗

ou tmat [ p [ 3 ] , i ]+ ou tmat [ p [ 4 ] , i ])%%2
}

The code for the 4-choose-3 combiner was very similar, and only required a different
Boolean function at the end of the code.
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